For more information on Scikit check out (https://scikit-learn.org/)
First start your Jupyter server using the short process:
- Open https://notebooks.hpc.fau.edu
- Click “Login”
- Click “Login to Jupyter”
- Enter your username and password.
- Click “Login”
- Click “New Server”
- Click “New” -> “Terminal”
- Enter “pip install –U scikit–learn–user “
- You may wish to update your pip if you wish. This is not required.
- Enter “pip install upgrade –user pip”
- Wait for this to complete.
- Exit the Jupyter server and log back in.
- You should now have scikit-learn installed.
Running Scikit-learn code:
- Click “New”
- “Click Python 3”
- Enter the following demo code from (https://scikit-learn.org/stable/auto_examples/plot_isotonic_regression.html#sphx-glr-auto-examples-plot-isotonic-regression-py)
print(__doc__) # Author: Nelle Varoquaux <nelle.varoquaux@gmail.com> # Alexandre Gramfort <alexandre.gramfort@inria.fr> # License: BSD import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from sklearn.linear_model import LinearRegression from sklearn.isotonic import IsotonicRegression from sklearn.utils import check_random_state n = 100 x = np.arange(n) rs = check_random_state(0) y = rs.randint(-50, 50, size=(n,)) + 50. * np.log1p(np.arange(n)) # ############################################################################# # Fit IsotonicRegression and LinearRegression models ir = IsotonicRegression() y_ = ir.fit_transform(x, y) lr = LinearRegression() lr.fit(x[:, np.newaxis], y) # x needs to be 2d for LinearRegression # ############################################################################# # Plot result segments = [[[i, y[i]], [i, y_[i]]] for i in range(n)] lc = LineCollection(segments, zorder=0) lc.set_array(np.ones(len(y))) lc.set_linewidths(np.full(n, 0.5)) fig = plt.figure() plt.plot(x, y, 'r.', markersize=12) plt.plot(x, y_, 'g.-', markersize=12) plt.plot(x, lr.predict(x[:, np.newaxis]), 'b-') plt.gca().add_collection(lc) plt.legend(('Data', 'Isotonic Fit', 'Linear Fit'), loc='lower right') plt.title('Isotonic regression') plt.show()
- Click Run (possibly twice) and you will be presented with the graph confirming Sci-kit is working in Jupyter.